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Abstract—We discuss the motivation and potential use-cases
of self-organizing networks (SON) in 5G networks. Disruptive
technologies and features of 5G networks include millimeter wave
(mmW), massive multiple-input multiple output (MIMO), and
cloud-radio access network (C-RAN). These have ramifications
on SON aspects of the networks. We discuss several new SON use-
cases and problems pertinent to emerging 5G technologies. The
discussed 5G SON use-cases include spectrum management and
sharing, user association, multi-radio access technology(RAT)
optimization, and directional cell search for mmW networks. We
then investigate directional cell search in detail, and consider a
network graph based approach for self-organized beam assign-
ment in mmW 5G networks. Simulations results in a realistic
Manhattan environment demonstrate the benefits of proposed
approach, in terms of improved user signal-to-interference plus
noise ratios to potential handover beams, thereby resulting in
better directional cell discovery.

I. I NTRODUCTION

The phenomenal growth in the popularity of wireless de-
vices and Internet based services in recent years has spurred an
exponential increase in demand for higher data rates, seamless
coverage, and ubiquitous connectivity. Novel use-cases and
applications are emerging rapidly, in areas such as health-
care, smart living, transportation, and industrial automation.
Recently, the 5G paradigm is envisaged for meeting these
challenges, especially in future networks to be deployed in
the 2020 time frame. The main paradigms of 5G include
massive broadband, massive machine communications, and
mission critical communications. Massive broadband focuses
on enabling a 1000× increase in aggregate data rates via
extreme densification, increased spectrum, and higher spectral
efficiency [1]. Massive machine communications and mission
critical communications constitute the paradigm of machine
type communications — a distinguishing feature of 5G. The
motivation for massive machine communication is to support
connectivity of massive number of devices to a common
platform, whereas mission critical communications aims at
providing ultra-reliability defined as 99.999% reliability and
2 millisecond latency. In order to meet the aforementioned
requirements and performance targets envisioned for 5G net-
works, a multitude of potentially disruptive technologiesare
currently under consideration. For instance, emerging tech-
nologies for enabling massive broadband include small cells,
massive multiple-input multiple output (MIMO), and millime-
ter wave (mmW) operation [2], [3].

It is worth noting that introduction of new technologies
may impact different aspects of network design and operation,

especially the ones that are related to CAPEX/OPEX and
energy consumption. In this regard, the potential of self-
organizing network (SON) functionalities in 5G networks
cannot be overstated [4], [5], [6], [7]. In particular, disruptive
5G technologies motivate the need for defining new SON
use-cases tailored to the needs of 5G networks. Apart from
the aforementioned technologies, upcoming features such as
multi-radio access technology (RAT) operation and interop-
erator spectrum sharing, can benefit from SON. From a 5G
perspective, centralized SON is relevant for most use-cases,
due to the centralized nature of cloud-radio access network(C-
RAN) architecture [5]. Moreover, application of network virtu-
alization and software defined networking (SDN) concepts will
introduce a high degree of programmability and agility in the
network, paving the way for an efficient network automation.
In particular, SDN is inherently suitable for enabling SON
functionalities in RAN [8]. The key benefit of virtualization
is that it enables an efficient sharing of radio and hardware
resources, whereas an SDN based architecture comprises of a
logically centralized control entity, with a global view ofthe
network. Thus, integration of these technologies can enable
quick network configuration and resource optimization via dy-
namic automated mechanisms [5]. The programmable nature
of SDN controllers can be leveraged to run self-organizing
programs for managing the network and optimizing resource
usage. The fine grained and centralized control of network
wide resources can enhance the gains achievable by SON
mechanisms, particularly for the use-cases related to resource
sharing and utilization.

In this paper, we identify possible use-cases for 5G SON,
and discuss their potential from a 5G perspective. Then, we fo-
cus on a use-case specific to mmW 5G networks – directional
cell search. A 5G SON framework based on network graphs
is discussed to address this use-case. Simulation results are
presented to analyze the performance of proposed approach.

The rest of the paper is organized as follows. Section II
gives an overview of different potential SON use-cases for 5G.
and III discusses the cell search problem. Finally, conclusions
and future research directions are given in Section IV.

II. ROAD TO 5G SON: USE CASES AND GRAPH MODELS

The main use-cases for 5G are motivated by the charac-
teristics which differ from 4G networks, and pave the way
for application of SON for an efficient network operation [9],
[10]. Potential SON use-cases for 5G networks are as follows.



A. Spectrum Management and Sharing

Efficient management and sharing of available spectrum
between operators is paramount to higher capacity and lower
costs. In 5G a multitude of new interoperator spectrum sharing
paradigms will be introduced. Examples include licenced
shared access, Licenced Assisted Access (LAA), citizen broad-
band radio service, co-primary spectrum sharing, and pluralis-
tic licencing. Automated management and sharing of spectrum
between RANs belonging to different operators is an attractive
use-case for SON. The respective spectrum controllers of the
operators may interact with each other and with the spectrum
database. The time scale of operation depends on the nature of
spectrum sharing scheme. Similar approaches can be applied
for low level spectrum sharing for interference mitigationin
a single operator RAN, albeit in centralized manner with a
faster time scale.

B. User Association

A common method of user association is that a user selects
base station on the basis of reference signal strength indicator.
This method is intrinsically sub-optimal for ultra dense and
multi-tier networks, due to non-uniform user distributionand
asymmetric transmit powers of base stations. In particular, in-
terference is a key issue in reuse-1 deployments. Consequently,
user association can have a profoud impact on network perfor-
mance. Heuristic approaches based on the concept of biasing
have been proposed for multi-tier networks. Its increasing
importance in 5G motivates the use of SON based techniques.
Efficient user-association can lead to significant performance
improvement in massive MIMO networks [11].

C. Multi-RAT Optimization

In 5G networks, multiple RATs on both licenced and un-
licenced spectrum bands will co-exist, particularly LTE/LTE-
A (with LAA) and WiFi. Thus, RAT-selection in both uplink
and downlink is a problem of interest for 5G networks [12],
[13]. Efficient selection of RAT using SON will lead to better
network performance. Both network assisted [14], and fully
distributed approaches have been reported in literature [15],
with promising results. Other SON problems that come under
this use-case include traffic steering and inter-RAT handover
optimization. Joint optimization of multi-RAT parametersis
essential for an efficient overall resource usage.

D. Directional Cell Search

In existing cellular systems, cell search is done using omni-
directional antennas or sectorized antenna patterns. A defining
characteristic of 5G is mmW band operation using highly
directional antennas, which are to be used both during network
discovery phase and for user specific transmissions. Otherwise,
there may be a mismatch between the range of a cell where
the network is discoverable, and the range where an acceptable
service is possible [16]. However, the use of directional beams
complicates the cell search procedure. The key challenge isto
enable cell search using highly directional beams over a large
angular domain [17], [18]. In [17], a directional cell discovery

procedure is proposed, which is based on periodic transmission
of synchronization signals in time-varying random directions.
Context-based cell search based on user location is discussed
in [19]. A comparative analysis of initial access techniques is
presented in [20]. Therefore, from a perspective of 5G SON,
directional cell search is an important problem for enabling
mmW operation.

E. Graph Based Approaches for SON

In the rest of the paper, we discuss a directional cell
search procedure based on a graph based network model.
Graph based models simplify the modeling and abstraction of
networks, paving the way for efficient network-wide resource
allocation and management. These methods have been used
for LTE/LTE-A SON problems, such as physical cell ID
assignment and primary component carrier selection [21], [22].
The accuracy and information in the network graph depends
on the underlying measurement and reporting mechanisms.
Moreover, a hierarchy of graphs can co-exist, reflecting the
information regarding the network state at different levels. The
abstracted information from lower-levels can be aggregated
and presented to upper control layers as different types of
graphs. The upper layers can use these for high level re-
source allocation and spectrum management. In this regard,
the importance of proper low level abstractions cannot be
overemphasized, as it has a direct impact on the signaling
load for measurement and reporting.

The concept of centralized coordinator in 5G can further
enhance the benefits of such approach, by aggregating and
abstracting the measurements and information received from
low levels, and creating a network graph. It can also control
the time-scale and the type of measurements being performed
by the lower level entities. A centralized view of the network
constructed from abstractions is an essential step towardsan
efficient network-wide resource allocation. Once the network
graphs are created using the abstractions from the lower layers,
SON programs can be run in the centralized coordinator on
these graphs to optimize the network [23].

In what follows, we discuss such a framework for directional
cell search in 5G networks. In this particular case, the network
can be modeled as a multigraph, and resource allocation
corresponds to multicoloring problem.

III. D IRECTIONAL CELL SEARCH IN MMW NETWORKS

The network graph based SON framework for beam as-
signment is illustrated in Fig.1. The users are involved in
measurement and reporting of potential handover beams to the
serving base station. The base station creates a local neighbor-
hood graph on the basis of abstractions of the measurements
received from the users. Moreover, it forwards the local graph
to the central coordinator, which then constructs a network
graph. The SON programs are run by the central coordinator
on the created network graph. A feedback loop exists via
which the central coordinator controls the base stations. It
can also ask base station and users for measurements and
abstractions. The central coordinator has a picture of overthe



overall resource situation in the whole network. An alternative
to centralized SON enabled by the central coordinator, is dis-
tributed SON run by the base stations. Compared to centralized
method, distributed beam assignment is more scalable and
easier to be implemented. Next, we discuss the system model
and algorithms for the beam assignment problem.

Neighbor discovery 

Beam measurement

Handover measurement

UE

Neighborhood graph

construction

Base station

Reporting

Controlling

Fig. 1. Framework for self-organized directional cell search.

A. System Model

We consider a graph multicoloring formulation of the di-
rectional cell search problem in a 5G mmW MIMO cellular
network. This formulation enables the application of various
graph coloring algorithms based on local search metaheuris-
tics. We model a network consisting ofI = |I| base stations.
For transmission of discovery signals, each base station has
a set of fixed beamsBi. The number of available beams is
same in all the cells, i.e.|Bi| = B, for all i ∈ I. In order to
cover the whole cell (or sector), time division multiplexing is
used for broadcast transmissions from the beams – in a given
broadcast channel resource, one beam, or a subset of beams,
is used for broadcast transmission of discovery signals forcell
search. These beams enable the users to discover the cells. A
user is able to discover a given cell only if the beam from the
base station of that particular cell is pointing in its direction,
and the interference from own cell beams in under control. The
spectrum allocation among base stations is based on reuse-1,
thus beams may interfere with each other. Accordingly, it is
important for a base station to schedule its beams in a way
that not only the whole cell is covered, but the interference
to the beams of other cells is minimized. For this, a graph
multicoloring formulation of the problem along with different
algorithmic approaches can be used.

1) Graph Multicoloring: Let G(I, E , w) denote a multi-
graph representation of the network, whereI and E are the
sets of vertices and edges, respectively. A functionw is defined
on the setE , such thatw(e) is weight of the edgee ∈ E , and
each vertex is assigned colors from a setBi. The aim is to
minimize the net weight (interference) on the edges.

2) Weighted Directed Multigraph: The graph is constructed
on the basis of user measurements by considering interference-
to-carrier (I/C) ratios between the strongest beam of potential
handover candidate cell, and the beams in own-cell. During
network operation, a cell collects historical informationfrom

handover measurements of its users during operation, and
aggregates this to a local description of the graph underlying
directional cell search. A user receives multiple beams with
varying powers from each base station. Let us denote the
power received by useru ∈ U from its serving base stationi
on beamb is pui,b. In cell i, there is a subset of beams
BHO→j ⊆ Bi which are potential handover candidates (best
other-cell beams) for at least one user in the network. Let
Ub =

⋃

j∈J U
b
j denote set of such users currently served by

a set of base stationsj ∈ J (with a set of beamsBj), and
considering a potential handover beamb ∈ BHO→j ⊆ Bi.
Thus, for each user inUb

j , there exists a setBj of own-cell
beams, and a single potential handover beam. Based on the
interference a user receives from its own-cell beamsBj, and
the received power from potential handover beamb, an I/C
vector is calculated for each user. It represents a coupling
between useru ∈ Ub

j of cell j and beamb of cell i. The
base station collects the history of these measurements, and
aggregates the user I/C vectors by taking a maximum over
the own-cell usersUb

j . This gives an I/C vectorxb
j,i ∈ R

B,
given as (1). It represents the worst I/C coupling between users
served by cellj, which consider a beam in celli as a potential
handover beam.

x
b
j,i = max

u∈Uj

[

p1i,u

pbj
. . .

p
|Bi|
i,u

pbj

]

(1)

The global network graph for directional cell search can
be aggregated at a central coordinator. Vectors describing
the local network view at different cells can be used to
populate an adjacency matrixA = [ak,l]BI×BI . The rows
k = Bi+1 . . . B(i+1) denote theB potential handover beams
of base stationi, and the columnsl = Bj + 1 . . . B(j + 1)
denote the index of the beams of host base stationj whose
users are measuring potential handover beams. For rowk, the
elements of columnsl = Bj+1 . . .B(j+1) are filled by the
vectorxb

j,i, in the row that corresponds to beamb of cell i.
Thus, an adjacency matrix is created which characterizes the
interference between own-cell beams and other-cell potential
handover beams.

B. Algorithms

The beam assignment problem is a multicoloring problem.
Each base station needs to select a color combination with
B colors. The task is to schedule a set of beamsBi of
each base stationi in B time slots such that the interfering
beams are assigned to different time slots, so that I/C the
users experience to the potential handover candidate beams
is reduced. Alternatively, broadcast transmissions to2 or 4
beams simultaneously can be considered. Here, we use a local
search based algorithm, given as Algorithm 1. The algorithm
is executed in a centralized manner by the central coordinator.
However, it is straight-forward to formulate its distributed
variant, which would be run at the level of base stations.



Algorithm 1 Beam Assignment Algorithm
1: Cell i using a valid beam schedulec, selects a new

schedulec′ = RandPerm{c} for cell i. Keep the beam
schedules for other cells fixed.

2: Find the set of UEsUi which are associated with celli. For
Ui, calculate the I/C vectorVc andVc′ for beam schedules
c andc′. Compute∆ = max(Vc′)−max(Vc),

3: if ∆ < 0 then
4: c← c′

5: else
6: c← c

7: end if

C. Simulation Results

The simulations are carried out using a Manhattan model
shown in Fig. 2, where the number of base stations|I| = 48.
A summary of the parameters used in simulations is given
in Table I. The historical collection of experiences of users
in the network is collected by a uniform sampling of|U| =
2560 user positions. Each base station serves a given sector
with |Bi| = 16 beams. A planar array model is used for
beamforming broadcast. Cell discovery broadcast beams are
transmitted during a number of time slots assigned by the
central coordinator. The number of time slots (beam colors)
is assumed to be16 , 8, or 4. A smaller number of time slots
for discovery purpose results in less overhead for neighbor
cell search. When there are less colors, discovery signals are
transmitted simultaneously to multiple directions. The idea is
that most of the broadcast channel information, common to
the cell, may be transmitted to multiple cells simultaneously.
Only a small part of broadcast information would be beam
specific. We have designed different kinds of beam patterns
for this planar array, as depicted in Fig. 3. For a setting
of 16 colors, single beams is transmitted during one slot.
Paired beams and quadrupled beams are used for settings
with 8 colors and4 colors. The beam assignment SON-
algorithm given as Algorithm 1 is used to improve the signal-
to-interference plus noise (SINR) performance for handover
users. Simulation results are shown in Fig. 4. The distribution
of SINRs of the handover measurements are shown, for users
that are in the handover regions, i.e. the received power from
a neighboring cell beam is within10 dB of the received
power of the best serving cell beam. The initial point of each
base station is a fixed permutation of beams over time slots.
At an update instant, a base station creates a new random
permutationc′ as a potential local move, and tests it for the
maximum I/C values for handover users. The result shows
that, the setting of16 colors with16 directional single beams
results in best handover discovery SINR performance. Using
less colors results in less overhead in neighbor cell search,
but the SINR performance will degrade due to the smaller
beamforming gain and increasing interference by using paired
beams or quadrupled beams. It can be seen from the results
that in this setting, one iteration is almost optimal for the

distributed update of color patterns for each cell.
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Fig. 2. Manhattan scenario and base stations with planar array

(a) Single beam (b) Paired beam (c) Quadrupled beam

Fig. 3. Beam pattern for|Bi| = 16,8,4

IV. CONCLUSION AND FUTURE WORK

This paper gives an overview of SON in the context of 5G,
and discuss several potential use-cases related to disruptive
technology directions in 5G networks. The use-case relatedto
directional cell search was investigated in detail. Transmissions

TABLE I
SIMULATION PARAMETERS

Simulation Configuration
Scenario Manhattan grid,800× 800m

Boundary conditions Wrap-around in all directions
Average Inter-site Distance 100m

Number of BSs 48
Number of UE positions 2560
mmW carrier frequency 28 GHz

LOS PL model for mmW 61.4 + 20 log10(d)
NLOS PL model for mmW 72.0 + 30 log10(d)

LOS probability model
(

min
(

d1

d
, 1
)(

1− exp
(

−d

d2

))

+ exp
(

−d

d2

))

2

LOS correlation distance 10 m
Maximum mmW TX power 24 dBm

mmW antenna for BS 8× 8 planar array
Beamforming setting Analog beamforming with simple precoding

Number of beams 16, 8 or 4
Number of colors 16, 8 or 4

Handover margin(HOM) 10dB
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of broadcast signals to multiple beams simultaneously can
be used to reduce the amount of resources needed for cell
search, or to reduce the latency in finding neighboring cells.
The cost of this is reduced SINR in handover measurements,
as there are more beams transmitting broadcast signals si-
multaneously with the potential handover beam in a neighbor
cell, and the broadcast signals have smaller coverage. This
leads to an increased number of Radio Link Failures (RLFs).
Moreover, a centralized coordinator may use more involved
SON-algorithms to improve the most precarious combinations
of beams from two cells, to reduce RLFs, and to trade-off
handover reliability against the amount of broadcast resources.

The potential ideas for future work include extending the
proposed self-organization framework to model other relevant
aspects of 5G SON, most notably energy efficiency. This
may be enabled by transmitting beams only in the directions
in which they are required, leading to reduction in energy
consumption as well as probability of collision between the
beams. Moreover, investigating the use of narrower beams,
multiple beams per base station, and joint self-optimization of
multiple parameters such as beam direction and transmission
power, are other promising research directions.
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